EFFECT OF VOLUMED FOG FORMATION ON THE
CONDENSATION OF SMALL VAPOR ADMIXTURES
IN A GAS STREAM

K. M. Aref'ev and E. N. Gol'dberg UDC 536.423.4:532.517.2

Analyzed is the effect of volumed fog formation on the precipitation of small vapor admixtures
from a laminar gas stream at the cooled surface of a plate. It is shown that precipitation in
this case may be different from diffusive precipitation.

Several factors govern the precipitation of small vapor admixtures on the cooled surface of a plate
immersed lengthwise in a stream of noncondensating gas. These factors include vapor diffusion through
the boundary layer [1}, thermodiffusion [2], and volume fog formation [3]. This article will deal with the
effect of volumed fog formation on vapor precipitation. The presence of a vapor supersaturation zone is
evident from a comparison between the curves of saturation pressure and partial vapor pressure versus
extra vapor pressure in the boundary layer. The solution fo the problem in terms of the hydrodynamic,
the thermal, and the diffusion boundary layers at the plate surface was given in [1] as the solution to the
following system of ordinary differential equations:
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with the boundary conditions ¢ (0) = 0, @ () = 2, h(0) = hy, h(=) = 1, ¢(0) = ¢y, c(©) = 1.

Equation (1™) was derived from the corresponding partial differential equation for the case of a low
vapor content in the gas. For this reason, then, the Stefan flow has been disregarded here. In this equation
@(£) is a function obtained from the Howarth function [4] by simple transformation and it is related to the
flow function as follows:
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In order to account for the variability of thermophysical properties* in terms of coordinates &,7, it
is convenient to use the A. A. Dorodnitsyn variables
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The solutions of Egs. (1'), (1"), (1™) are given in the form
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*The system of Egs. (1'), (1"), (1™) was solved on the assumption that the viscosity coefficients, the
thermal conductivity, and the Dy,/T ratio increase linearly with the temperature. Actually, these rela-
tions are somewhat weaker than that.
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. For a specific example, with Ty, Tews Py, Pw, Py, Pw, Pre, and Prpe known, it is possible,

after the numerical values of the integrals in (6) and (7) have been found, fo obtain the profiles of vapor
temperature and concentration in the boundary layer. From the known relation P, = Pg(T), we can also
plot the vapor saturation pressure as a function of the temperature in the boundary layer:
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Here Py denotes the vapor saturation pressure at a temperature equal to the wall temperature.

For example, the problem was solved for an air stream containing an admixture of water vapor and
flowing around a plate at a velocity of 10 m/sec under a total pressure in the stream 2 = 1 atm. The stream
temperature was assumed equal to 50°C, the Prandtl number equal to 0.711, the Prandtl diffusion number
(Schmidt number) equal to 0.616, the partial pressure of water vapor in air Pw = 0.11 kgf/cm?, and the plate
length I = 1 m. The solution to (7) and (8) for this case is shown in Fig. 1.

The solution was obtained for wall temperatures Ty = —20, —10, and 0°C.

The graph shows that near the wall saturation pressure drops below the partial pressure of vapor.
This means that there exists a supersaturation zone and volumed fog formation occurs. Fog formation in
the boundary layer causes a change in the concentration profile here. In order to determine the new con-
centration profile of the boundary layer, it is necessary to solve Eq. (1™) so that, with some point M( ¢, P)
as the origin, the boundary conditions P(«<) = 1 and P'(~) = 0 are also satisfied. For such a solution one
may use the same function ¢ (£) which was used for solving system (1), inasmuch as the hydrodynamic
boundary layer is assumed not to change in the process.

We will represent Eq. (1™) in terms of the following system of two linear differential equations:
6y = Can 9"
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This system was solved numerically on a digital computer "PROMIN'". The location of point M(£n,
cpp) on curve Pg(Z) was selected so as to satisfy the condition

¢ (00) =1; ¢(o0) = 0. {10)

The slope at point M of the solution and at point M of the P s(&) curve were considered equal, more-
over, so as to ensure continuity of the diffusion current. Near the wall, where the partial pressure varies
linearly, the molar mass transfer is negligibly small. This decrease of the slope past point M indicates
that part of the vapor stream becomes a fog.

Since even small differences between the calculated location of point M and its sought actual location
caused large deviations from condition (10), hence it was possible to rather accurately establish the co~
ordinates of point M. Determined were also c¢;(M) and cy(M).

This modified concentration boundary layer is shown in Fig. 1 by the dashed line.

We note that this method of solving the problem has yielded a larger value for the derivative of partial
pressure with respect to coordinate at point M and a correspondingly larger diffusion current of vapor than
in the case of no volumed fog formation. * This is indicated by the following values of the ratio

*We assume that the humber of condensation centers in the stream is sufficiently large and that fog forma-
tion starts before saturation has been reached. The larger diffusion current is due fo an earlier vapor
drain here than at the wall [5].
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Fig. 1. Partial pressure P and equilibrium pressure
Pg of vapor in the boundary layer, as a function of the
dimensionless £ coordinate: dimensionless partial
vapor pressure in the boundary layer (1), dimension-
less equilibrium vapor pressure in the boundary layer
at a wall temperature Ty = 0°C (2), —10°C (3), —20°
(4), boundary layer modified by volumed fog formation
(5).

Ty, °C = 0% —10° — 20°; —02—((@—_—:— 1.08; 1.13; 1.23,
c2

respectively.

The resulting aerosol is apparently a mist of submicron size particles which, under such conditions
for small aerosol particles and, particularly, under a temperature gradient, obeys the equation of thermophoretic
flow [6]. Under the conditions of our problem, therefore, an aerosol particle formed in the boundary layer
moves with the stream at a velocity u at a given location in the boundary layer, and in the direction oppos-
ing the temperature gradient (in our case toward the cooled wall surface) at a thermophoretic velocity V.
For 6 < A, the latter is determined from the ratio

15k grad T
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The equation of the trajectory is then
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=3
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This equation can be solved with the values of {1y, ¢y, and C'M found from the solution to (1™), if a
change is made to physical variables according to relations (3) and (4) and with known values of the physical
parameters P, Pows ¥, Puw: Woor €tc. The relation between the physical variables will then be obtained in
the form

y = 0.0077 v x ¢. (13)

For gpecific values of coordinate { we will have a specific form of the relation between y and x.
Taking into account also the nearly linear variation of velocity and temperature near the wall, we approxi-
mate the relations obtained as a result of a numerical solution according to formulas (5) and (6):

u = 0.86. 10° Vy? ) (14)

T = (— 20 4 41.247) + 273.16, (15"
T = (— 10 + 35.330) 4 273.16, (15")
T — 29.45¢ -+ 273,16 (15m)

respectively for wall temperatures Ty, = —20, —10, and 0°C. Such an approximation makes it possible
to calculate the thermophoretic velocity and to solve the equations of aerosol trajectory.
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The solution to these equations are parabolas:

1.62 108y% = x - A, (167)
146 1052 = x + A, (16™)
115 1082 = X+ A (16™)

for the respective wall temperatures Ty = —20, —10, and 0°C.

Constant A is determined from the stipulation that the initial coordinate of the particle is y = yy; and
its final coordinate is y = 0. One can also find a relation between x)r and x; of an aerosol particle (.e.,
between the coordinate of the aerosol source and the coordinate of aerosol precipitation):

1
Xy = B X5 17

where x;; is obtained from expression (13) with a specific value given for {1 Point x3y (Fig. 2) will cor-
respond to this extreme trajectory of a particle which has reached the plate. Coefficient B we find by
simultaneously solving the trajectory equations (16) and (13).

When no volumed condensation occurs, then the condensating substance precipitates on a given plate
length in a quantity

Gaier =

dx. (18)
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When volumed condensation occurs, then the quantity of precipitate is
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The first term in (19) represents the quantity of condensate which has penetrated into the boundary
layer from the outer edge of the fog formation zone down to point xi‘/[ off the plate surface. The second
term in this sum represents the quantity of aerosol formed behind point Xi\k/I within the fog formation zobe.
This quantity of aerosol precipitates on the surface. The third term of the sum represents the quantity of
vapor precipitated on the surface. This portion of the vapor precipitates in accordance with the laws of

diffusion. If dPs/dy is assumed to vary linearly through the interval {0, yp;], then the right-hand side of
Eq. (19) can be rewritten as:

where

k=
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The ratio G'/Ggjgr will be the criterion characterizing the effect which aerosol formation and aerosol
ejection beyond the boundary layer has on the precipitation of small vapor admixtures from a gas stream.

Calculation based on the specific values here have yielded the following values for this ratio:
Gl
@ gy

T, °C=0, —10; —20%

W, = 0.30; 0.17; 0.14.

At small temperature gradients and high stream velocities, in other words, the ejection of aerosol
may be the predominant factor which abates the precipitation of vapor on a surface. The results may be
different under other conditions. For example, G'/Ggiff = 1 during precipitation of K,CO; and K,50, ad-
mixtures from a high-temperature stream of flue gases.

NOTATION

@ is the function numerically equal to twice the dimensionless velocity in the
boundary layer;

h is the dimensionless temperature in the boundary layer;

c is the dimensionless mass concentration in the boundary layer;

P ig the flow function;

'Y is the dimensionless coordinate;

X,y are the longitudinal and transverse coordinates respectively;

P is the density of gas;

e’ is the gas density referred to density of oncoming stream;

T is the temperature;

u,v are the velocity components along the x and y axes respectively

Tw, Ux, P are the temperature, velocity, and partial pressure of vapor admixture in
oncoming stream;

Ty Pw are the temperature and partial pressure of vapor at the wall surface;

P is the density of oncoming stream;

Dyseo is the diffusivity of oncoming stream;

[T is the dynamic viscosity of oncoming stream;

Ao is the thermal conductivity of oncoming stream;

Qoo is the thermal diffusivity of oncoming stream;

Prpw = Voo/Dn.,, is the Prandtl diffusion number (Schmidt number) referred to oncoming
stream;

Preo = Vo/0w Prandtl number referred to oncoming stream;

k=1.38-10"® m?- kg/sec?-°K is the Boltzmann constant;

a=1 is the fraction of diffusively dispersed particles;

mg ~ 4.8 10726 kg is the mass of gas molecule;

vV is the thermophoretic velocity;

A is the free-path-length of molecule in the gas

0 is the characteristic dimension of aerosol particle;

P= (P—Py)/(P—Py) is the dimensionless partial pressure of vapor.
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